The Transiting Exoplanet Survey Satellite (TESS) has begun its mission to discover thousands of new exoplanets right in our cosmic background. The lead organization behind TESS is the Massachusetts Institute of Technology, where members of its Kavli Institute for Astrophysics and Space Research (MKI) spearheaded the mission’s development and are serving in prominent science roles today.
Nurturing TESS from an idea to the drawing board, and then from the fabrication lab into the final frontier has churned up a whirlwind of activity at MKI for a decade. The director of MKI, Jacqueline Hewitt, has been there for all of it. She pushed to get TESS approved by NASA, oversaw its instrument development, and will also oversee its science operations over the next two years in the hunt for Earth-like planets that could conceivably host alien life.
For a perspective on the impact TESS has already had and will have on MKI, The Kavli Foundation spoke with Hewitt shortly after TESS’ launched on April 18, 2018. In this candid conversation, Hewitt describes the successes and challenges in making TESS a reality, as well as the excitement she and her colleagues feel serving in the vanguard of advancing our understanding of the broader universe.
The following is an edited transcript of the discussion. The participant has been provided the opportunity to amend or edit her remarks.
Jacqueline Hewitt is the Director of the MIT Kavli Institute (MKI), a lead institution behind the TESS mission.
(Credit: MKI)
THE KAVLI FOUNDATION: How did the idea for TESS first emerge at MIT?
JACQUELINE HEWITT: It was 12 years ago and the field of exoplanets was still in its relative infancy. We did not know yet if exoplanets were these rare things or quite common in the galaxy. Astronomers were talking about the measurements we needed in order to find more planets and to study them. It’s a really difficult problem because exoplanets are, of course, so far away and so tiny and faint from a cosmic perspective.
Back then, George Ricker, a Senior Research Scientist here at MIT and MKI, had finished up his work on the satellite HETE-2. This mission looked for sudden brightening events out in the universe, called transients, caused by the explosions of stars and other phenomena. TESS grew out of HETE-2. George and his colleagues had the realization that going to space would give them the ability to accurately gather enough light to find exoplanets when they cross their host stars, causing just a slight dimming, and also to be able to scan a big portion of the sky to find lots of these planets.
So, I remember George walked into my office and said he had this idea for this mission. In your job as director of a place like MKI, you have to figure out how to put scarce resources into different things. A lot of people will walk into my office with ideas, and to be honest, oftentimes they’re not very good ideas. But this idea for TESS, as soon as I heard it, I thought: “Wow—this is timely, the technology is up to it, this is something we’d be able to do now.” I went into high gear at that point, trying to raise money and develop a consensus within our astronomical community that TESS would be a good thing to do.